Valentino Maiorca

Apple MLR Intern | ELLIS Ph.D. Student (Sapienza & ISTA)

prof_pic.jpg

I explore why similar latent representations emerge in different neural networks, both artificial and biological, and how we can leverage this understanding across various scientific fields and real-world applications.

I’m particularly fascinated by how data-intrinsic factors (its semantics) shape latent structures, and serves as a bridge for communication between their networks. By uncovering the mechanisms that give rise to this shared geometry, we can push beyond black-box models, building more interpretable, robust, and adaptable systems.

If you’re interested in these topics or would like to connect, feel free to reach out (e-mail works best)! I’m always open to collaborations, discussions, and new ideas.


Full CV available here.

Selected Publications

  1. ResiDual Transformer Alignment with Spectral Decomposition
    Valentino Maiorca*, Lorenzo Basile*, Luca Bortolussi, Emanuele Rodolà, and Francesco Locatello
    arXiv preprint, 2024
  2. Relative representations enable zero-shot latent space communication
    Luca Moschella*Valentino Maiorca*, Marco Fumero, Antonio Norelli, Francesco Locatello, and Emanuele Rodolà
    In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023, 2023
  3. COSYNE
    Multi-subject neural decoding via relative representations
    Valentino Maiorca, Simone Azeglio, Marco Fumero, Clémentine Dominé, Emanuele Rodolà, and Francesco Locatello
    In Cosyne Abstracts, 2024
  4. ASIF: Coupled Data Turns Unimodal Models to Multimodal without Training
    Antonio Norelli, Marco Fumero, Valentino MaiorcaLuca MoschellaEmanuele Rodolà, and Francesco Locatello
    In Thirty-seventh Conference on Neural Information Processing Systems, 2023
  5. Latent Space Translation via Semantic Alignment
    Valentino MaiorcaLuca Moschella, Antonio Norelli, Marco Fumero, Francesco Locatello, and Emanuele Rodolà
    In Thirty-seventh Conference on Neural Information Processing Systems, 2023
  6. From Bricks to Bridges: Product of Invariances to Enhance Latent Space Communication
    Irene CannistraciLuca Moschella, Marco Fumero, Valentino Maiorca, and Emanuele Rodolà
    In The Twelfth International Conference on Learning Representations, 2024