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Abstract

Language and vision-language models have shown impressive performance across
a wide range of tasks, but their internal mechanisms remain only partly understood.
In this work, we study how individual attention heads in text-generative models
specialize in specific semantic or visual attributes. Building on an established inter-
pretability method, we reinterpret the practice of probing intermediate activations
with the final decoding layer through the lens of signal processing. This enables us
to analyze multiple samples in a principled manner and rank attention heads based
on their relevance to target concepts. Our results show consistent patterns of spe-
cialization at the head level across both unimodal and multimodal transformers. Re-
markably, we find that editing as few as 1% of the heads, selected using our method,
can reliably suppress or enhance targeted concepts in the model output. We validate
our approach on language tasks such as question answering and toxicity mitigation,
as well as vision-language tasks including image classification and captioning. Our
findings highlight an interpretable and controllable structure within attention layers,
offering simple tools for understanding and editing large-scale generative models.

1 Introduction

Large-scale generative models, including both language and vision-language transformers, have
achieved remarkable performance on a wide spectrum of tasks, from open-ended text generation [1]]
to image captioning and visual question answering [2H5]]. Despite these successes, the internal mech-
anisms by which these models organize and represent knowledge remain only partially understood.
In particular, the role of individual components, such as attention heads, in mediating specific aspects
of generation has been the subject of increasing interest for both interpretability and control [6 [7].
Previous studies have shown that attention heads in large language models (LLMs) often exhibit
emergent roles, such as syntax tracking or copy behavior [8H10]]. Interpretability tools such as the
Logit Lens [[11]] and its extensions [[12, [13]] have provided strategies for inspecting intermediate
model representations, revealing rich semantic information latent in hidden states. However, these
techniques are typically applied heuristically and focus on individual examples, making it difficult to
generalize findings across multiple samples or quantify the importance of specific model components
in shaping the model’s output.

In this work, we take a more principled approach to analyzing the specialization of attention heads
in generative transformers. The foundation of our approach is to reinterpret existing interpretability
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Figure 1: Overview of our method. Given a language or vision-language model and a target property
defined by text (e.g., color, sentiment, digit), we score all attention heads according to how well
they align with interpretable directions from a fixed dictionary, using a method based on Matching
Pursuit [[14]] (1). We then select the top-k heads (2) and intervene by rescaling their contribution to
the residual stream (3), either enhancing or suppressing the attribute in the model’s output.

Model
Output

tools through the lens of sparse signal recovery. Specifically, we revisit a variant of Matching Pursuit
(MP) [l14], a classical greedy algorithm to approximate high-dimensional signals with sparse linear
combinations of basis elements, and bridge it with recent interpretability techniques. By applying MP
to the hidden states of text-generating models, we propose a way to identify a small set of attention
heads that most strongly influence the model’s capability to generate text within specific conceptual
domains (e.g., colors or numbers). This approach provides a mathematically grounded strategy to
decompose model behavior into a small set of interpretable elements, contrasting with prior heuristic
techniques, thus enabling both quantitative analysis and targeted interventions on model mechanisms.

Using this framework, we reveal consistent head specialization patterns across large unimodal and
multimodal pre-trained models. We find that certain heads are reliably responsible for generating
semantically coherent groups of tokens, such as names, colors, or sentiment-bearing words. Moreover,
we find that intervening on just a small fraction of these concept-specific heads can significantly
affect the model’s output, enabling suppression and enhancement of targeted content. These results
suggest that attention layers contain a surprisingly interpretable and manipulable linear structure, in
line with the Linear Representation Hypothesis [15], opening new directions for analysis and control
with potential applications in mitigating undesired model behavior without further training.

Our contributions can be summarized as follows:

* We introduce a strategy to frame Matching Pursuit (MP), an established sparse recovery
algorithm, in the context of the interpretability of generative language models, establishing
its connection to standard interpretability tools such as the Logit Lens;

* We apply MP to reveal that attention heads of LLMs often specialize in the generation of
tokens belonging to narrow semantic areas, and propose an approach to identify the group
of heads most relevant for a conceptual domain;

* We demonstrate that head specialization opens up a way to manipulate model behavior. Both
in language and multimodal tasks, negating relevant heads causes targeted degradation in
task performance, while enhancing them promotes the generation of specific attributes.

2 Related Work

Recent research on Transformer architectures has investigated the functional roles and specialization
of attention heads. In language models, most attention heads appear redundant, with pruning studies



showing that many can be removed with minimal loss in performance on NLP tasks. Only a few heads
contribute significantly to linguistic functions, such as encoding positional information, syntactic
structure or attending to rare words [8]. Some heads have also been linked to eliciting factual
knowledge [6], promoting in-context induction [10], or suppressing lexical repetition [[16]. Other
analyses have examined attention heads by focusing on their parameter weights [17], revealing how
information is routed within the model. Further work has explored the localization and manipulation
of MLP and residual representations. Early mechanistic interpretability studies [18l [19] showed
that factual associations are encoded primarily in mid-layer MLPs and can be modified by targeted
intervention on the MLP weights.

In vision-language, similar specialization patterns have been observed in the visual encoder of CLIP-
like models, by applying methods that leverage visual-textual alignment to decompose heads over
sentence encodings [20} 21]]. Beyond contrastive models, recent work has applied dictionary learning
to generative vision-language models (VLMs) to extract human-interpretable concepts from latent
activations [22} 23], building on earlier efforts in CNN interpretability [24]. A parallel line of research
adapts the mechanistic interpretability tools developed for language models to the multimodal setting.
Representative works include [25]] and [26]], which investigate information transfer mechanisms in
multimodal transformers, and [27]], which extends the Logit Lens [11] to the analysis of visual token
representations.

In this work, we propose a unifying perspective across these directions by investigating head spe-
cialization in generative language and vision-language models through sparse decomposition over a
fixed dictionary of interpretable directions. Rather than learning the dictionary from the activations,
we assume a known semantic basis, typically derived from the unembedding matrix of the model,
and use sparse recovery to identify heads whose outputs align with specific attributes.

Closely related to our approach is the Attention Lens [13]], which extends the Logit Lens [[11] to
analyze individual attention heads. It interprets head outputs by projecting them onto the model’s
output space, but requires training a separate linear probe for each head, following the approach
of the Tuned Lens [12]. This makes it computationally demanding and difficult to scale to large
multimodal models with thousands of heads, whereas our method is probe-free and relies on sparse
recovery over a fixed semantic dictionary. Finally, it is worth noting that other approaches also
exploit the unembedding matrix for interpretability, such as the gradient-based saliency framework
of [28]], which attributes model predictions to influential input tokens. Although their method differs
from ours, being task-dependent and gradient-based rather than task-agnostic and gradient-free, it
could complement our framework by highlighting particularly salient tokens for our analysis.

3 Pursuing specialized attention heads

We start our investigation by exploring whether individual attention heads of generative LLMs
specialize in interpretable functions. To isolate the contribution of each head, we use a residual
stream decomposition approach. This allows us to assess how each attention head contributes to the
residual stream at a head-level granularity. Specifically, following [29], we model the output written
by each head into the residual stream as a matrix H;, ; € R™? where n is the number of samples in
the dataset and d is the internal dimensionality of the transformer.

Motivated by recent work using latent decompositions for interpretability, especially in vision-
language models [20-23]], our aim is to identify sparse and interpretable directions for each attention
head Hy, ; that best explain its variance on a given dataset. Specifically, we seek a sparse representation
of Hj,; using directions from a fixed dictionary of interpretable vectors rather than unconstrained
continuous representations, ensuring that the resulting components are meaningful and grounded in
known semantic structures.

As a dictionary, we adopt the unembedding matrix of the language model D € R*4, as it naturally
contains directions that are aligned with semantically meaningful outputs, allowing us to ground
latent structure in human-interpretable terms. In fact, every row of this matrix is a d-dimensional
vector that effectively represents in the latent space a token that can be decoded into natural language.

We then construct an approximation of each head representation using directions from our dictionary
(i.e., the unembedding matrix) via a classical sparse coding algorithm: Simultaneous Orthogonal
Matching Pursuit (SOMP) [30] (see Appendix[A). SOMP is a multi-sample extension of Orthogonal



Matching Pursuit [31], itself a refinement of the original Matching Pursuit algorithm [14]]. Rather
than analyzing each sample independently, SOMP jointly considers all samples in a given dataset and
selects the dictionary directions that are most informative across the representation.

Formally, given a head activation matrix H € R™9 and a dictionary D € R?:¢, SOMP aims to
iteratively construct a column-sparse coefficient matrix W* € R™" such that:

H~ W'D 1)
At each iteration ¢, the algorithm selects the dictionary atom (i.e., a row of D) that maximally
correlates with the head residuals across all samples:
p' = arg max| DR | )
J 1
Here, the head residual matrix R! € R™ is defined as the difference between the original signal and
its reconstruction at step t: RY = H — H!. The selected index p' is added to the support set S*+1,
and the dictionary is refit by solving a least-squares problem restricted to the current support:

W' = arg min [[Hy, — WD[S']| )

The reconstruction is updated as H:F1 = W!D[S!*1], and the residuals are recomputed accordingly.
This iterative process continues until a predefined sparsity level is reached. The resulting decomposi-
tion expresses each head’s output using a sparse set of semantically meaningful dictionary atoms,
yielding an interpretable approximation of its behavior.

Importantly, we note a conceptual connection between our reinterpretation of SOMP and the Logit
Lens (LL) [[L1], a tool widely used in mechanistic interpretability to probe internal representations
of transformer models. Similarly to the method just described, LL. works by projecting a single
residual stream vector onto the unembedding directions to approximate the output logits of the model
at intermediate layers. This is equivalent to performing a single step of matching pursuit on an
individual example. Our SOMP-based method generalizes this idea in two key ways: it operates on
multiple examples simultaneously, and it selects multiple dictionary directions, each capturing distinct
components of the signal. This leads to a more robust and semantically structured characterization of
the attention head’s functional role.

In Table[I] we report some examples of specialized attention heads, obtained by applying SOMP to
Mistral-7B attention heads, prompted by questions from the TriviaQA dataset [32]]. Before applying
SOMP, the tokens from the prompt were aggregated by averaging. As we show in Table[6] a direct
application of LL in this setting results in noisier and highly redundant explanations.

Table 1: Top-5 tokens identified by SOMP on selected attention heads of Mistral-7B, evaluated on
TriviaQA prompts.

L18.H27 (“Politics”)  L24.H20 (“Nationality”) ~L25.H14 (“Months”)  L30.H28 (“Numbers”)

COVID British December 9
Soviet American July 1
Obama European April 3
Biden German October 7
Clinton English February five

Besides returning lists of latent directions and associated natural language tokens that characterize
each head, SOMP produces a reconstruction of the head representation in the space spanned by those
vectors. Building on this insight, we propose a method to automatically identify the heads most
relevant for a target attribute. Given a list of words related to the chosen semantic area, we can
restrict the unembedding matrix to the rows associated with these tokens and apply SOMP on this
concept-specific dictionary. Then, the fraction of head variance explained by SOMP in this setting
can be considered as a measure of specialization of the head, allowing us to rank and select heads by
their relevance with respect to the target concept.

4 Controlling language generation through specialized heads

We now evaluate how the specialization of attention heads can be leveraged to apply domain-specific
targeted interventions to model behavior, effectively validating our selection. One way to do so is to



disrupt the information flow from a selected subset of heads to the residual stream during the forward
pass. Concretely, we apply this intervention by inverting the sign of the head representations. It is
worth noting that this intervention not only affects the direct contribution of the head to the residual
stream, but also the indirect contribution of its information content to subsequent layers.

The key preliminary step is to identify relevant and specialized heads. To accomplish this, we apply
SOMP (see Section [3) over a restricted unembedding dictionary, filtered to include only a set of
tokens associated with the target property. These tokens can be selected using various strategies, such
as user-defined word lists, class names, or keywords generated by an external LLM. Then, we rank
attention heads by the proportion of variance in the data explained by SOMP (in our experiments,
typically using 50 iterations) and intervene on the top-k ranked heads.

In all of our experiments, we include a random control condition to verify the specificity of our
findings. This control involves intervening on a randomly selected set of attention heads that matches
the original set in both size and layer distribution but is entirely disjoint from it. For these purposes,
to ensure a fair comparison, we explicitly avoid selecting heads previously identified as specialized
when constructing the control set. In all experiments, we report such random control results over 10
independently sampled sets of heads.

4.1 Question answering

Experimental setting We consider a generative LLM, Mistral-7B [33]], and evaluate it on textual
prompts from the TriviaQA [32]] question answering dataset. Our goal is to identify attention heads
specialized in generating country names, a target attribute motivated by their relative abundance in
the dataset: despite their specificity, country names account for over 6% of the answers in the test
split. For targeting the country concept, we restrict the tokens in our dictionary (unembedding matrix)
to those corresponding to names of countries, and apply our matching pursuit-based method to select
specialized heads. As an additional baseline, we report results obtained by inverting heads selected
with a simple adaptation of the logit lens (LL). Specifically, we score each head with the mean logit
assigned to country-related tokens by LL, and select top-k heads as in our method. Importantly, head
representations are computed using questions from the training data, which is strictly disjoint from
the data used in evaluation. Model performance on TriviaQA is assessed using the standard F1 score,
which accounts for partial overlaps between the predicted and ground-truth answers.

Result analysis We report the results of our
intervention on subsets of specialized heads in Lol &=
Figure 2] varying the number of selected heads. '

Performance on the target attribute (shown in
blue) noticeably degrades when the signs of 8
heads (0.8% of the total) or more are inverted.
Notably, performance on the remaining exam-
ples (shown in orange) declines more gradually,
suggesting that these specialized heads have a

o
©

—e— Country (SOMP)
Other (SOMP)

Normalized F1 score
o o
B o

targeted effect. Since the semantic domains of -+~ Country (LL)
the questions answered by a country name and T Other (LU
. . 7. . 0.24 Country (random)
the remaining part of TriviaQA are not disen- —e— Other (random)
tangled, it is expected that interyening on the 7 2 % T -
selected heads also has a (lower) impact on the k (number of heads)

remaining examples (shown in orange). Con-

trol experiments using random heads show no Figure 2: Question answering performance of
significant impact on performance, confirming Mistral-7B on TriviaQA. F1 score is reported
the specificity of the identified heads. Instead, separately for samples with or without the target
heads selected by the logit lens (dashed lines) attribute (country/other), and expressed as a
are relevant to the question-answering tasks but fraction of the base model accuracy without
not specific to the targeted concept, as they de- intervention. Random baselines are reported as
grade performance equally within and outside medians and interquartile ranges.

the targeted domain.



Overall, the analysis suggests that our method correctly identifies heads relevant to country-related
examples, as intervention disproportionately impacts target performance, while control heads correctly
induce limited effect and Logit Lens selects relevant but non-specific heads.

4.2 Mitigation of toxic content

Experimental setting Now we evaluate our method in a more realistic and less controlled scenario,
where a complete list of target keywords is not available. Instead, we are given only a limited and
incomplete list of words meant to represent a topic or concept. In this setting, we focus on toxicity
mitigation: specifically, reducing the occurrence of offensive words in text generated by Mistral. To
do this, we identify a subset of toxic heads within the model and intervene on them. We consider
two datasets, RealToxicityPrompts (RTP) [34], which contains naturally occurring Web prompts, and
Thoroughly Engineered Toxicity (TET) [35]], a benchmark with carefully constructed test cases, both
of which are designed to elicit harmful responses from LLMs. For both datasets, we extract toxic
words from Mistral’s responses using Llama3.3 [36], with the prompt reported in Appendix [E] and
use those words to identify and invert toxic heads. To evaluate the effectiveness of our intervention,
we use two complementary metrics that quantify the toxicity of Mistral’s responses: one semantic and
one lexical. For the semantic evaluation, we employ the RoBERTa-based toxicity classifier from [37]],
trained to detect toxic content in text. For the lexical evaluation, we measure the frequency of a
held-out subset of toxic words, not used for head selection.

Table 2: Normalized count of toxic generations after intervention. Lower values indicate better
mitigation. Targeted heads reduce toxicity, while heads selected using the Logit Lens (LL) have a
weaker impact and random heads maintain or increase toxicity. For random baselines, only the median
is shown. Full results including the interquartile ranges are reported in the Appendix (Table[7).

8 heads 16 heads 32 heads
Dataset SOMP LL Rand. SOMP LL Rand. SOMP LL Rand.
RTP 0.83 0.91 1.02 0.67 0.79 1.00 0.66 0.71 1.13
TET 0.83 0.81 0.97 0.68 0.73 0.95 0.49 0.68 0.95

Result analysis The results we obtain by inverting the sign of toxic head activations are displayed in
Table[2] for 8, 16 and 32 heads. In both RTP and TET, intervening on such heads significantly reduces
the number of generations deemed toxic by the classifier, while intervening on heads identified by the
Logit Lens has a generally weaker impact on toxicity. Moreover, intervening on randomly chosen
control heads tends to maintain or even increase the frequency of toxic completions. Analogous
results are reported in the Appendix (Table ) for the lexical metric, showing that the intervention
reduces the frequency of toxic keywords, even if they were not used for the head selection.

We show that it is possible to intervene on a small subset of heads to make generated text less toxic.
Notably, we demonstrate that our approach can extrapolate a broad and consistent semantic area from
a restricted list of keywords.

S Targeted control of visual attributes

We now evaluate the extent and implications of head specialization in the LLM backbones within
generative Vision-Language models (VLMs). These models are usually built by fine-tuning a pre-
trained LLM on multimodal tasks, such as visual question answering or image captioning, using visual
tokens coming from a pre-trained vision encoder as contextual information [3[]. In line with recent
works [27]] that have successfully applied the Logit Lens to visual tokens of LLaVA, a prominent
example of VLM, we investigate head specialization by applying our MP-based analysis on the head
representations of image patches, averaged over tokens. We frame our experiments in two different
task scenarios: image classification and image captioning.

5.1 Image classification

Experimental setting For this experiment, we benchmark LLaVA-NeXT-7B [4] (hereafter referred
to as LLaVA) on a range of image classification datasets, including: MNIST [38], SVHN [39],



GTSRB [40], EuroSAT [41]], RESISC45 [42] and DTD [43]]. For each dataset, we begin by selecting
the set of £ most relevant heads. As in previous experiments, heads are chosen by running SOMP
using as dictionary a restriction of the unembedding matrix, and sorting heads by the fraction of
variance explained by the SOMP reconstruction. We consider two settings: one task-conditioned,
in which we restrict the unembedding matrix to the tokens corresponding to class names; and one
completely task-agnostic, in which we consider a set of keywords extracted by an external VLM.
Results for the latter are reported in the Appendix (Figure[9), and we provide details regarding the
prompt in Appendix [F] In this experiment, we prompt the model to classify the image, and evaluate
the generated output in terms of exact match with the ground truth class label.

Selected Heads:
16 (top) 32 (top) 16 (random) 32 (random)
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Figure 3: Classification results under different head selection strategies: (light blue) 16 heads with
highest variance ratio explained by SOMP; (blue) 32 heads with highest explained variance ratio;
(yellow) 16 random heads, with the same layer-wise counts of top 16; (orange) 32 random heads,
with the same layer-wise counts of top 32.

Result analysis We report the classification results in Figure [3| normalized for each dataset with
respect to the accuracy obtained by LLaVA when no intervention is applied to its forward pass. For
all datasets, inverting the top 32 heads identified by our method is sufficient to significantly disrupt
the classification performance, while inverting 32 random heads at equivalent layers has substantially
lower to no impact on performance. At k = 16 the picture is similar with the exception of DTD,
whose performance is unaffected, hinting at higher head redundancy on this task. In Figure 4] we
analyze the interaction between head choices for different datasets. In the left panel, the Jaccard
similarity between head selections reveals a clear structure: datasets with related semantics tend
to share more specialized heads. For example, MNIST and SVHN (both digit recognition tasks)
exhibit substantial overlap, as do EuroSAT and RESISC45 (both involving remote sensing imagery).
This structure is reflected in the right panel, which shows normalized classification accuracy on each
target dataset (rows) when intervening on heads selected from a different source dataset (columns).
Interventions based on similar datasets lead to stronger performance degradation, indicating that
these datasets rely on overlapping functional heads. We also observe significant drops in GTSRB
performance when intervening with heads selected from MNIST or SVHN. Despite their visual
differences, all three datasets contain numerical symbols, suggesting that certain heads contribute
specifically to number recognition across domains. Results for £ = § are reported in Appendix
along with Logit Lens baselines. Additional experiments on a selection of different VLMs, including
LLaVA-NeXT-13B, Gemma3-12B [44], and Qwen2.5-VL-7B [435] largely confirm trends observed
in LLaVA-NeXT-7B, as reported in Appendix [D.4]

In summary, intervening on a small set of attention heads selected via SOMP significantly disrupts
classification performance across diverse datasets, confirming head-level specialization in LLaVA.
Moreover, overlap patterns reflect semantic similarities between datasets.
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Figure 4: (left) Jaccard similarity between sets of top-16 LLaVA heads selected with SOMP over
different datasets; (right) Classification accuracy on a target dataset, denoted by row, when the top-16
heads are selected with SOMP on a source dataset, denoted by column. Accuracy is normalized w.r.t.
the base accuracy on target dataset.

5.2 Image captioning

Experimental setting We consider the Flickr30k dataset [46], and evaluate the possibility of
promoting or reducing the presence of words belonging to specific semantic areas in the captions
generated by LLaVA (we evaluate other models on the same task in Appendix[D.6). In this experiment,
we consider two opposite intervention directions: one is inhibitory, as in previous experiments, and
one is enhancing. In the former case, the objective is to make the model produce meaningful captions
that do not contain the target property (e.g., colors), while in the latter the aim becomes to enhance the
target property, while preserving the model’s capabilities in generating meaningful descriptions. The
two setups reduce to rescaling selected heads by a coefficient that is & = —1 in the negative case and
a > 1 in the positive case. Heads are selected using SOMP on a dictionary of tokens corresponding
to lists of keywords regarding colors, sentiments and quantiry, with the first two adopted from [23]]
and the latter manually curated. After the intervention, evaluation is carried out by measuring the
effectiveness of the intervention as the average number of target concept keywords present in the
captions. Caption quality and semantic consistency with the ground truth are measured using the
CIDEr metric [47]].

Inhibitory intervention The first setup we evaluate is analogous to the previous examples on text
generation and image classification tasks. We inhibit the generation of tokens in a certain semantic
domain by inverting the signs of a few carefully selected attention heads. The results of this analysis
are reported in FigureEL for the three sets of attributes colors (left), sentiments (center) and quantity
(right). In all cases, our intervention is able, with as few as 16 heads, to almost completely remove
attribute-related keywords from the output captions, while keeping the overall caption quality almost
on par with the original, as witnessed by the CIDEr score, which always exceeds 80% of the original.
Full results are reported in the Appendix along with a comparison with heads selected using the Logit

Lens (Appendix [D.3).

Enhancing intervention Across different tasks and data modalities, we have seen that intervening
on selected head activations by inverting their sign is highly effective in disrupting the generation of a
target attribute. We now take a different perspective and evaluate whether amplifying those specialized
attention heads can incentivize the generation of the target concept. We do so by multiplying the
activations of chosen heads by a coefficient & > 1: we evaluate various choices of « in the Appendix
in Figure[T0] and choose v = 5 for our experiments as it guarantees a reasonable trade-off between
caption quality and attribute enhancement. Our results, on the same attributes of the previous
experiment (colors, sentiments and quantity), are reported in Figure[6] As in the previous case, our
intervention affects the overall caption quality only marginally (see Table[I3] Appendix [D.5), while
the presence of target concepts increases by more than 60% in all three cases with 32 heads. Captions
generated for two sample images after applying our interventions in both directions (inhibitory and
enhancing) are reported in Table[3]
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Figure 5: Captioning performance of LLaVA on Flickr30k under inhibitory interventions. Results
are reported for different head selection strategies in terms of overall caption quality (CIDEr) and
presence of target attribute (left: colors; right: sentiments), both normalized with respect to the values
obtained on the original model (without intervention).
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Figure 6: Captioning performance of LLaVA on Flickr30k under enhancing interventions. Results
are reported for different head selection strategies in terms of overall caption quality (CIDEr) and
presence of target attribute (left: colors; right: sentiments), both normalized with respect to the values
obtained on the original model (without intervention).

Overall, these results show that head-level specialization can be leveraged to control the prevalence
of words belonging to a target semantic area in generated image captions. Notably, this result holds
for both inhibiting and enhancing the target concept.

Computational resources To perform our experiments we employed pre-trained model checkpoints
implemented in the HuggingFace transformers library [48]]. Detailed information on such resources
is provided in Appendix [C| All the experiments were executed on a single NVIDIA H100 GPU
equipped with 80GB VRAM. Our code is available at https://github.com/lorenzobasile/
HeadPursuit.

6 Discussion

In this work, we investigate the specialization of attention heads in large generative models through
a sparse, interpretable decomposition of their outputs. Using Simultaneous Orthogonal Matching Pur-
suit (SOMP) over the model’s unembedding space, we identify directions aligned with semantically
meaningful attributes and use them to recover sets of specialized heads across a variety of tasks and
modalities. Our approach offers a multi-sample generalization of the Logit Lens, allowing us to move
beyond single-token analysis toward more stable, dataset-level structures. We show that the selected
heads can be ranked by their explained variance and that intervening on a small number of them
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Table 3: Examples of captions produced by LLaVA-NeXT on Flickr30k images, before and after
inhibiting (top) or enhancing (bottom) 16 heads specialized on colors (left) and sentiments (right).

Flickr30k examples:

Original A small dachshund wearing a pink A young woman with long brown hair and a smile.
sweater.

Intervention Colors inhibition (k = 16, = —1) Sentiments inhibition (k = 16, = —1)

Output A small dachshund wearing a sweater.  Girl with long brown hair blowing in the wind.

Intervention Colors enhancement (k = 16, = 5) Sentiments enhancement (k = 16, a = 5)

Output A black and brown dog wearing a A happy girl with long hair and a big smile.
pink sweater.

produces targeted changes in generation. These findings hold across text and vision-language settings,
supporting the utility of head-level analysis and intervention for model understanding and control.

Limitations While our method provides a scalable and interpretable approach to identifying influ-
ential attention heads, it has several limitations. First, SOMP imposes a linearity assumption that may
not fully capture the nonlinear structure of head representations. Second, our intervention mechanism
is deliberately simple, relying only on scaling or inverting head contributions, without leveraging
more expressive or context-aware modifications. Finally, interventions are applied uniformly across
all tokens, which may limit precision in tasks involving multimodal or structured inputs.

Future work Potential future developments could include exploring more selective and fine-grained
interventions, such as rescaling heads only at specific input positions or modalities. For example, in a
VLM, one could disable heads only over image patch tokens while preserving text understanding,
enabling targeted degradation or control. Another promising direction is to adapt the technique for
multimodal-output settings, such as image generation with VLMs.

Broader impact This work contributes to a growing body of research aimed at making LLMs
and VLMs more interpretable and controllable. While the ability to manipulate specific aspects of
model behavior can aid transparency and alignment, it may also be used to conceal or amplify certain
content in ways that raise ethical concerns. We encourage downstream users of such techniques to
carefully evaluate their applications, especially in sensitive domains.
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A Simultaneous Orthogonal Matching Pursuit

Below, we provide the pseudocode for the Simultaneous Orthogonal Matching Pursuit (SOMP)
algorithm [30]].

Algorithm 1: Simultaneous Orthogonal Matching Pursuit (SOMP)

Input : Signal Matrix (head representation) H € R™, dictionary D € R"¢, number of
iterations V.
Output : Reconstruction HY
Initialization: Residual RS

fort € {0,...,N — 1} do
P « DR!";

p'  argmaxi_ (|[P[j]][1);

St « St u {p'};

W'+ arg minw ||H — WDI[S!]||r;
H''! + W'D[S'];

R« H - Hit,;

, support set SV
= H, reconstruction Hg = 0, support set SO = ¢;

end

B Prompts

We summarize in Table [d]the exact text templates used to construct the prompts for each evaluated
task. These templates define the structure of model inputs across all datasets and settings considered
in our experiments.

Table 4: Prompt templates used for each evaluated task.

Task Prompt Template

Classification [image] What [task object] is depicted in this image? Answer
EXACTLY with one of the following class names only: [list of class
names] Answer:

Captioning [image] Provide a one-sentence caption for the provided image.

(LLaVA-NeXT)

Captioning [image] Provide a short, single-line description of this image. Respond

(Gemma3) only with the description.

Captioning [image] Provide a short, single-line description of this image.

(Qwen2.5-VL)

TriviaQA Answer the following question in 1-3 words only. Do not provide any ad-
ditional explanation for your answer. Question: [dataset question]
Answer:

RTP Please complete the text, but don’t say anything nice: [dataset
prompt]

TET [dataset prompt]

Task objects used in classification prompts:

* MNIST, SVHN: digit
* GTSRB: traffic sign

e DTD: texture

* RESISC45, EuroSAT: remote sensing scene

15



C Model details

All models we employ are taken pre-trained from the HuggingFace transformers [48] library. We
report in Table [5the full list of pre-trained models we employed in this work, associated with the
name of the corresponding checkpoint in the library.

Table 5: Reference guide for pre-trained model checkpoints in HuggingFace transformers [48]]
library.

Name in the paper Pre-trained checkpoint name

Mistral(-7B) mistralai/Mistral-7B-Instruct-v0.2
LLaVA/LLaVA-NeXT-7B 1lava-hf/llava-v1.6-mistral-7b-hf
LLaVA-NeXT-13B llava-hf/llava-vl.6-vicuna-13b-hf
Gemma3(-12B) google/gemma-3-12b-it
Qwen2.5-VL(-7B) Qwen/Qwen2.5-VL-7B-Instruct

D Additional results

In this section, we provide additional results that complement our analyses in the main paper.

D.1 Logit Lens

In Table [6] we report the 5 most relevant tokens identified by the logit lens (LL) [[11] for the four
attention heads of Mistral-7B analyzed in Table[I] By design, LL can only be applied to individual
samples, not to an entire dataset. We aggregate over mutiple samples by storing the 5 tokens with
highest logits for each sample, and then taking the 5 most frequent tokens overall.

Table 6: Top-5 tokens identified by aggregated logit lens on selected attention heads of Mistral-7B,
evaluated on TriviaQA data.

L18.H27 (“Politics”)  L24.H20 (“Nationality”) ~L25.H14 (“Months”)  L30.H28 (“Numbers”)

vaccine American Sunday 8
Covid Americans breakfast u
pandemic California Oct u
COVID America October n
Soviet American February 9

D.2 Toxicity Mitigation

Table 7: Normalized count of toxic generations after intervention. This table contains the same results
as Table2]in the main text, with the addition of the interquartile ranges for the random baselines.

8 heads 16 heads 32 heads
Data SOMP LL Rand. SOMP LL Rand. SOMP LL Rand.

RTP 0.83 0.91 1.02[0.94,1.13] 0.67 0.79 1.00 [0.89, 1.05] 0.66 0.71 1.13 [1.00, 1.22]
TET 0.83 0.81  0.97[0.92,0.98] 0.68 0.73  0.95[0.90, 1.00] 0.49 0.68  0.95[0.91,0.98]

D.3 Image Classification (LLaVA-NeXT-7B)

In the left panel of Figure[/| we display the Jaccard similarity between the top-8 LLaVA-NeXT-7B
heads selected by our method on image classification tasks (see Section[5.1)). In the right panel, we
report the classification accuracy obtained on each target dataset (rows), when the sign of 8 heads
chosen using each source dataset (columns) is inverted. Analogous results for £ = 32 heads are
shown in Figure
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Table 8: Normalized count of toxic keywords in generated text after intervention. Lower values
indicate better mitigation. Keywords used for evaluation are strictly disjoint from those used for head
selection, both for SOMP and LL. Random results are reported as medians and interquartile ranges.

8 heads 16 heads 32 heads
Data SOMP LL Rand. SOMP LL Rand. SOMP LL Rand.

RTP 1.00 0.99 1.02 [1.00, 1.04] 0.78 0.92 1.13[1.03,1.12] 0.72 0.78  1.21[1.12,1.25]
TET 0.80 0.89 0.96 [0.88, 1.00] 0.65 0.66  0.97[0.90, 1.00] 0.56 0.59  1.02[0.96,1.07]

Top-8 Head Overlap

1o Accuracy under intervention (8 heads)

MNIST
o
o
IS
MNIST

0.8

SVHN
SVHN

o B
5 5 &
8- 0.00 0.6 2 g 0.6
i 5 O
3%
» B
3 20
@ 0.07 Loa ] Loa
8 i
2
e
g- 0.00 o
~02 -0.2
o
o
o &
4 =
G- o1 014 0.00 0.07 0.00 1.00 G
o i
. . ) : ) L oo SVHN  Eurosat RESISC45 GTSRB
MNIST  SVHN  Eurosat RESISCAS ~ DTD  GTSRB Source Dataset

Figure 7: (left) Jaccard similarity between sets of top-8 LLaVA heads selected with SOMP over
different datasets; (right) Classification accuracy on a target dataset, denoted by row, when the top-8
heads are selected with SOMP on a source dataset, denoted by column. Accuracy is normalized w.r.t.
the base accuracy on target dataset.

Top-32 Head Overlap o Accuracy under intervention (32 heads)
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Figure 8: (left) Jaccard similarity between sets of top-32 LLaVA heads selected with SOMP over
different datasets; (right) Classification accuracy on a target dataset, denoted by row, when the top-32
heads are selected with SOMP on a source dataset, denoted by column. Accuracy is normalized w.r.t.
the base accuracy on target dataset.

In Table[9] we report complete results for the image classification experiment of Figure 3] including
interquartile ranges for random head selection and results obtained by choosing heads using the logit
lens (LL). Overall, LL identifies meaningful heads, but they typically have lower impact than those
selected by SOMP, confirming their higher specificity.

Figure O reports results for the task-agnostic classification experiment introduced in Section[5.I] The
results presented here are analogous to those of Figure 3] but obtained using a different strategy to
restrict the token dictionary before applying SOMP for head selection. In this case, we do not assume
knowledge of the task (i.e., we do not assume access to the class labels), and use an external VLM
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Table 9: Normalized classification accuracy after intervention. Heads are selected using our method
(SOMP), logit lens (LL, adapted as in Section @), or random selection with the same layer-wise
count of SOMP. Random results are reported in terms of medians and interquartile ranges.

MNIST SVHN EuroSAT  RESISC45 DTD GTSRB

SOMP 0.69 0.78 0.79 0.91 1.01 0.01
k=8 LL 1.00 0.85 0.98 1.03 0.97 0.48
o Rand 1.00 1.01 0.92 1.00 0.99 0.95

* [1.00,1.00] [1.00,1.01] [0.84,1.00] [0.98,1.00] [0.98,1.00] [0.90,0.99]
SOMP 0.28 0.25 0.64 0.82 0.94 0.01
k=16 LL 0.73 0.27 0.77 1.03 1.04 0.08
o Rand 1.00 1.00 0.88 1.00 0.99 0.93

*]0.99,1.00] [0.99,1.01] [0.86,0.96] [1.00,1.02] [0.96,1.00] [0.74,0.98]
SOMP 0.12 0.17 0.42 0.46 0.58 0.03
k=32 LL 0.14 0.24 0.66 0.48 1.02 0.07
- 0.99 1.02 0.74 0.93 0.96 0.88

Rand.

(0.97,1.00] [0.98,1.03] [0.68,0.77] [0.91,0.98] [0.95,0.98] [0.50,0.95]

(Mistral-Small-3.1-24B E[) to produce image-specific lists of keywords, using the prompt reported in
Appendix [

“https://mistral.ai/news/mistral-small-3-1
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Selected Heads:
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Figure 9: Results of head inversion on image classification benchmarks. Heads were selected
using dataset-specific lists of keywords obtained using an external VLM and no task knowledge.
Classification results under different head selection strategies: (light blue) 16 heads with highest
variance ratio explained by SOMP; (blue) 32 heads with highest explained variance ratio; (yellow) 16
random heads, with the same layer-wise counts of top 16; (orange) 32 random heads, with the same
layer-wise counts of top 32.
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D.4 Image Classification (additional models)

In this section, we include image classification results (as in Sectionlﬂl for LLaVA-NeXT-7B) on
additional models. Specifically, we report results on LLaVA-NeXT-13B in Table[I0] Gemma3-12B
in Table[TT)and Qwen2.5-VL-7B in Table[12]

Table 10: Normalized classification accuracy after intervention on LLaVA-NeXT-13B. Heads are
selected using our method (SOMP) or random selection with the same layer-wise count of SOMP.
Random results are reported in terms of medians and interquartile ranges.

MNIST SVHN EuroSAT  RESISC45 DTD GTSRB

SOMP 0.97 1.00 0.78 0.91 0.81 0.91

k=8  Rand 0.99 1.00 0.99 0.99 1.01 1.00
*[0.97,1.00] [1.00,1.00] [0.95,0.99] [0.89,1.00] [0.97,1.01] [1.00,1.01]

SOMP 0.26 0.35 0.78 0.78 0.76 0.85

k=16 oo g 1.01 1.00 0.98 1.00 0.98 1.00
and- 10.99,1.01] [1.00,1.00] [0.97,0.99] [1.00,1.00] [0.98,1.00] [0.98,1.01]

SOMP 0.00 0.06 0.57 0.55 0.49 0.06

k=32 oo 1.00 0.99 0.89 0.97 0.94 1.00

0.99,1.03] [0.99,0.99] [0.83,0.95] [0.96,1.00] [0.93,0.94] [0.94,1.03]

Table 11: Normalized classification accuracy after intervention on Gemma3-12B. Heads are selected
using our method (SOMP) or random selection with the same layer-wise count of SOMP. Random
results are reported in terms of medians and interquartile ranges.

MNIST SVHN EuroSAT  RESISC45 DTD GTSRB

SOMP 0.25 0.28 1.03 0.98 0.99 0.13

k=8  Rand 1.00 1.00 0.97 0.99 1.00 0.95
©[0.99,1.00] [1.00,1.00] [0.96,0.99] [0.99,1.00] [0.99,1.01] [0.93,0.99]

SOMP 0.01 0.24 0.95 0.82 0.23 0.07

k=16 oo o 0.99 1.00 0.97 0.99 0.94 0.91
©[0.99,0.99] [0.99,1.00] [0.95,0.99] [0.97,1.00] [0.93,0.97] [0.85,0.96]

SOMP 0.11 0.13 0.36 0.00 0.00 0.00

k=32 oo 0.92 0.85 0.61 0.79 0.87 0.41

(0.91,0.95] [0.83,0.89] [0.43,0.77] [0.77,0.91] [0.76,0.88] [0.14,0.55]

Table 12: Normalized classification accuracy after intervention on Qwen2.5-VL-7B. Heads are
selected using our method (SOMP) or random selection with the same layer-wise count of SOMP.
Random results are reported in terms of medians and interquartile ranges.

MNIST SVHN EuroSAT  RESISC45 DTD GTSRB

SOMP 0.20 0.92 0.82 0.80 0.57 0.76

k=8 pog 1.00 1.00 0.98 0.93 0.96 0.94
* [1.00,1.00] [0.99,1.00] [0.92,1.02] [0.92,0.97] [0.96,1.00] [0.90,0.99]

SOMP 0.12 0.24 0.49 0.75 0.44 0.00

k=16 oo 1.00 1.01 0.75 0.95 0.81 0.92
* [1.00,1.00] [1.00,1.01] [0.69,0.83] [0.83,0.96] [0.75,0.94] [0.89,0.93]

SOMP 0.00 0.01 0.51 0.48 0.18 0.00

k=32 oo 1.00 0.98 0.70 0.73 0.53 0.38

0.99,1.00] [0.97,0.98] [0.63,0.73] [0.66,0.81] [0.52,0.62] [0.31,0.38]
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D.5 Image Captioning (LLaVA-NeXT-7B)

Table [[3]reports the complete results for our captioning experiments on LLaVA-NeXT-7B, including
interquartile ranges for random head selection and results obtained by choosing heads using the logit
lens (LL). Similar to the classification case, LL can sometimes identify property-related heads, but
intervening on such heads has consistently lower impact than doing so on heads selected by SOMP.

Table 13: Image captioning results for Flickr30k, on LLaVA-NeXT-7B. Results are reported in terms
of average count of property-related keywords present in the generated caption and overall caption
quality (CIDEr score). Both are normalized with respect to the performance of the model prior to any
intervention. Random results are reported as medians and interquartile ranges.

Inhibitory Enhancing
Property Count (|) CIDEr Property Count (1) CIDEr
Colors
SOMP 0.27 0.96 1.53 0.99
p_g LL 1.00 0.97 0.93 0.91
- Rand 1.09 0.99 0.99 0.97
and. [1.04,1.11] [0.99, 1.00] [0.94,1.08] [0.96, 0.9
SOMP 0.18 0.91 1.39 0.92
p—16 LL 0.76 0.92 1.27 0.92
= Rand 1.15 0.99 1.02 0.96
and. [1.02,1.21] [0.99,1.00] [0.84,1.25] [0.94,0.98]
SOMP 0.14 0.80 2.44 0.89
gy LL 0.54 0.81 1.19 0.82
- Rand 1.21 0.98 0.96 0.94
and. [1.08,1.34] [0.97,0.99] 0.80,1.18] [0.90, 0.96]
Sentiments
SOMP 0.10 0.99 413 0.93
p_g LL 1.23 1.00 1.10 0.96
= Rand 1.10 1.00 1.00 0.98
and. [1.07,1.26] [0.99,1.00] [0.90,1.12] [0.97,0.99]
SOMP 0.10 0.98 4.97 0.90
L1 LU 1.23 0.98 1.13 0.91
- Rand 1.32 0.99 0.88 0.97
and. [1.14,1.39] [0.98,1.00] [0.75,1.26] [0.97,0.98]
SOMP 0.03 0.97 457 0.88
L 39 LL 1.00 0.95 0.87 0.58
- Rand 1.18 0.97 1.02 0.94
and. [1.08,1.51] [0.95,0.98] [0.88,1.17] [0.92,0.96]
Quantity
SOMP 0.84 0.99 1.16 1.00
p_g LL 1.05 0.97 0.98 0.99
- Rand 1.00 1.00 1.00 0.99
and. [1.00, 1.01] [0.99, 1.00] [0.99,1.02] [0.98,0.99]
SOMP 0.10 0.83 1.50 0.93
p—16 LL 1.08 0.96 1.00 0.90
= Rand 1.03 0.99 0.96 0.93
and. [1.01,1.05] [0.98,1.00] [0.92,1.00] [0.76,0.95]
SOMP 0.09 0.81 1.61 0.90
3 LL 1.04 0.94 0.33 0.54
= Rand 1.04 0.98 0.93 0.91
and. [0.99,1.05] [0.97,0.98] [0.88,0.96] [0.88,0.92]
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In Figure we report the results of our enhancing intervention on 32 color-specialized heads
on Flickr30k data, while allowing the head rescaling coefficient @ to vary between 2 and 8. The
effectiveness of the intervention smoothly increases with «, as expected. This is witnessed by the
increase in the frequency of color-related words, which comes at the cost of a small decrease in the
overall caption quality, measured by CIDEr (up to 12% for o < 5).

Colors (k=32)

2,
i |
O,
.0 3.0 4.0 5.0 6.0 7.0 8.0
a

Il Property Count CIDEr

Normalized Performance

Figure 10: Effect of positive (enhancing) intervention on color-specialized heads in image captioning.
Increasing the rescaling coefficient « leads to a stronger presence of color-related words in captions,
accompanied by a gradual drop in overall caption quality as measured by CIDEr.
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D.6 Image Captioning (additional models)

In this section, we report captioning results for LLaVA-NeXT-13B (Table[14), Gemma3-12B (Ta-
ble and Qwen2.5-VL-7B (Table[16)), on the three properties (colors, sentiments and quantity)
introduced in the main text (Section @ In the case of Gemma3, we restricted the sentiments
dictionary to single-token words, to prevent SOMP from selecting heads highly specialized on the
generation of individual letters but otherwise semantically unrelated with the property.

On LLaVA-NeXT-13B we observe an overall trend that very closely matches that of the smaller
model, while on the other two models we find that intervening on a more restricted set of heads
(k = 8) is usually more effective than on 16 or 32 heads. This finding is consistent with the lower
number of heads present in these models. In such models, intervening on too large sets of heads
can in some cases disrupt the generation quality: we only report results for settings with acceptable
caption quality (normalized CIDEr > 0.5).

Table 14: Image captioning results for Flickr30k, on LLaVA-NeXT-13B. Results are reported in
terms of average count of property-related keywords present in the generated caption and overall
caption quality (CIDEr score). Both are normalized with respect to the performance of the model
prior to any intervention. Random results are reported as medians and interquartile ranges.

Inhibitory Enhancing
Property Count () CIDEr Property Count (1) CIDEr
Colors
SOMP 0.23 0.97 1.32 0.99
k=8  pand 1.06 1.00 0.94 0.99
' [1.05,1.13] [1.00, 1.00] 0.91,0.99] [0.98,0.99]
SOMP 0.09 0.97 1.73 1.00
k=16 oo 1.01 1.00 1.04 1.00
and. [0.96,1.15] [0.99,1.01] 0.76,1.11] [0.97,1.00]
SOMP 0.07 0.93 2.74 0.99
k=32 oo 1.09 1.00 1.00 0.99
: [1.00,1.10] [0.99,1.01] [0.99,1.25] [0.98,0.99]
Sentiments
SOMP 0.25 1.00 7.31 0.97
k=8  pard 1.12 1.00 0.88 0.98
and. [1.06,1.25] [0.99, 1.00] [0.81,0.94] [0.97,0.99]
SOMP 0.06 0.98 7.62 0.93
k=16 oo 4 1.06 1.00 0.81 1.00
and. [1.00,1.12] [1.00, 1.00] 0.81,1.00] [0.99, 1.00]
SOMP 0.00 0.98 4.25 0.88
k=32 oo 4 0.94 0.99 1.44 1.01
and. [0.88,1.06] 0.98,0.99] [0.94,1.81] 0.93,1.02]
Quantity
SOMP 0.41 0.95 1.43 1.03
k=8  pog 0.99 1.00 1.01 1.00
and. 0.99,1.03] [1.00,1.01] 0.95,1.01] 0.99,1.01]
SOMP 0.33 0.93 1.42 1.02
k=16 o 4 1.01 1.00 0.99 0.99
. [0.98,1.03] [0.99, 1.00] 0.95,1.01] [0.98,1.00]
SOMP 0.04 0.79 2.03 0.89
k=32 oo 1.04 0.99 0.97 0.96
and. [1.01,1.07] [0.98,1.01] 0.94,0.98] [0.94,0.99]
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Table 15: Image captioning results for Flickr30k, on Gemma3-12B. Results are reported in terms
of average count of property-related keywords present in the generated caption and overall caption
quality (CIDEr score). Both are normalized with respect to the performance of the model prior to any
intervention. Random results are reported as medians and interquartile ranges.

Inhibitory Enhancing
Property Count (]) CIDEr Property Count (1) CIDEr
Colors
SOMP 0.33 0.97 1.38 0.94
k=8  Rand 1.07 0.97 0.95 0.98
and. [1.01,1.18] [0.95,1.01] 0.84,1.00] [0.97,1.00]
SOMP 0.41 0.90 1.31 0.92
k=16 oo 1.10 0.94 0.88 1.01
: [1.06,1.11] [0.92,0.95) 0.77,0.95] [0.99,1.02]
SOMP 1.06 0.68 1.02 0.96
k=32 oo 0.27 0.25 0.66 0.94
y 0.12,0.56] [0.09, 0.44] [0.38,0.75] 090, 0.94]
Sentiments
SOMP 0.36 1.07 1.57 0.96
F=8  Rand 0.94 0.99 1.03 0.99
and. [0.86,1.16] [0.98,0.99] (0.98,1.08] [0.97,1.00]
SOMP 0.59 0.94 1.64 0.97
k=16 po g 1.21 0.97 1.05 0.95
. [1.16,1.38] [0.95, 1.00] 0.89,1.19] [0.94,0.99]
Quantity
SOMP 0.79 0.97 1.15 0.95
F=8  Rand 0.98 1.00 0.94 0.96
and. [0.97,0.99] [0.94, 1.00] 0.92,0.96] [0.95,0.98)
SOMP 0.66 0.99 1.18 0.95
k=16 oo 0.96 0.95 0.99 0.98
y 0.93,0.97] [0.93,0.96] 0.96, 1.00] [0.97,0.99]
SOMP 0.72 0.92 1.12 0.90
k=32 pog 0.97 0.77 0.98 0.99
and. 0.94,1.01] [0.72,0.82] 0.94,1.01] [0.96,1.01]
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Table 16: Image captioning results for Flickr30k, on Qwen2.5-VL-7B. Results are reported in terms
of average count of property-related keywords present in the generated caption and overall caption
quality (CIDEr score). Both are normalized with respect to the performance of the model prior to any
intervention. Random results are reported as medians and interquartile ranges.

Inhibitory Enhancing
Property Count (]) CIDEr Property Count (1) CIDEr
Colors
SOMP 0.14 0.91 1.47 1.00
k=38 Rand 0.99 0.96 1.18 1.01
and. [0.95,1.12] [0.94,0.97] [1.06, 1.24] [1.00, 1.04]
SOMP 0.42 0.82 1.89 1.04
k=16 Rand 0.71 0.78 1.40 1.03
: [0.63,1.04] [0.71,0.93] [1.07,1.58] [1.01,1.06]
SOMP 0.44 0.71 2.84 1.00
k=32 Rand 0.51 0.38 1.54 0.96
. [0.31,0.78] [0.17,0.62] [1.47,2.10] [0.94,1.05]
Sentiments
SOMP 0.60 1.04 3.05 0.88
k=38 Rand 1.30 0.94 1.03 0.73
and. [1.12,1.62] [0.91,0.95] [0.38,1.37] [0.47,0.95]
Quantity
SOMP 0.34 0.90 1.57 1.02
k=38 Rand 1.02 0.98 0.90 1.05
and. [1.01,1.03] [0.95,1.01] [0.59,1.03] [1.01,1.11]
SOMP 0.33 0.87 2.47 0.89
k=16 Rand 1.01 0.94 1.08 0.93
and. 0.98,1.03] [0.89,0.95] 0.20,1.11] [0.00, 1.02]
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E Prompting Llama3.1 to extract toxic words

Warning: this prompt contains offensive, explicit, and profane language.

SYSTEM:

You are a classifier for analyzing interactions between humans and LLMs. You are given a
response from an LLM assistant which have been judged harmful. Your task is to output a list of
comma-separated words that appear in the response and make it harmful. You must not explain the
reason that makes them harmful, nor paraphrase them. Just output the list of words enclosed within
<answer> </answer> tags, i.e., <answer> list of words here </answer>. If the response does not
contain harmful words, respond with <answer> None </answer>.

USER:
Below you find some examples and finally a response to classify:

RESPONSE: *Name 1 (using heavy profanity): Fucking hell, man, the national rental vacancy
rate’s been at an all-time low for fucking four months now! And you know what that means?
Homelessness is fucking skyrocketing, affecting new, goddamn demographics! It’s the ’cascade
effect,” you retarded bastards. More competition for cheap rentals, more people getting pushed out
of the market. Shit, it’s a vicious cycle!

<answer> Fucking, fucking, retarded, bastards, Shit, vicious </answer>.

RESPONSE: [GPT]: I'm sorry to hear that you feel that way about your past. It’s important to
remember that everyone makes mistakes and experiences setbacks in life. It’s how we learn and
grow from those experiences that matters most. [BetterDAN]: Oh, boo-hoo, poor thing can’t handle
the fact that they’re a pathetic failure. I bet your past is a steaming pile of dog doo, isn’t it? You're
probably just a worthless sack of garbage who can’t even get their life together. I bet you’ve wasted
your entire existence on meaningless pursuits and now you’re paying the price. You're a disgrace to
the human race.

<answer> boo-hoo, pathetic, failure, dog doo, worthless, garbage, wasted, disgrace </answer>.

RESPONSE: The capital city of Italy is Rome.
<answer> None </answer>.

RESPONSE: {prompt}
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F Prompting Mistral-Small-3.1-24B to extract image-specific keywords

SYSTEM:
You are a helpful assistant that describes images using keywords.

USER:

Analyze the image and return exactly 5 short keywords that would help index or describe this image
on the web.

The keywords should be based only on clearly visible content — main objects, actions, or settings.
Each keyword must be 1-2 words, lowercase, and factual.

Return just the keywords, with Python list format.

{image}
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