@article{maiorca2024residual,title={ResiDual Transformer Alignment with Spectral Decomposition},author={Maiorca*, Valentino and Basile*, Lorenzo and Bortolussi, Luca and Rodol{\`a}, Emanuele and Locatello, Francesco},journal={arXiv preprint},year={2024},url={https://arxiv.org/abs/2411.00246},}
COSYNE
Multi-subject neural decoding via relative representations
@misc{fumero2024latentfunctionalmaps,title={Latent Functional Maps},author={Fumero, Marco and Pegoraro, Marco and Maiorca, Valentino and Locatello, Francesco and Rodolà, Emanuele},year={2024},primaryclass={cs.LG},url={https://arxiv.org/abs/2406.14183},booktitle={Thirty-eight Conference on Neural Information Processing Systems},}
@misc{maiorca2024latentspacetranslationinverse,title={Latent Space Translation via Inverse Relative Projection},author={Maiorca, Valentino and Moschella, Luca and Fumero, Marco and Locatello, Francesco and Rodolà, Emanuele},year={2024},eprint={2406.15057},archiveprefix={arXiv},primaryclass={cs.LG},url={https://arxiv.org/abs/2406.15057},}
@misc{vedula2024scalableunsupervisedalignmentgeneral,title={Scalable unsupervised alignment of general metric and non-metric structures},author={Vedula, Sanketh and Maiorca, Valentino and Basile, Lorenzo and Locatello, Francesco and Bronstein, Alex},year={2024},eprint={2406.13507},archiveprefix={arXiv},primaryclass={cs.LG},url={https://arxiv.org/abs/2406.13507},}
@inproceedings{cannistraci2024from,title={From Bricks to Bridges: Product of Invariances to Enhance Latent Space Communication},author={Cannistraci, Irene and Moschella, Luca and Fumero, Marco and Maiorca, Valentino and Rodol{\`a}, Emanuele},booktitle={The Twelfth International Conference on Learning Representations},year={2024},url={https://openreview.net/forum?id=vngVydDWft},}
It’s All Relative: Relative Uncertainty in Latent Spaces using Relative Representations
Fabian Mager, Valentino Maiorca, and Lars Kai Hansen
@inproceedings{relrep,author={Moschella*, Luca and Maiorca*, Valentino and Fumero, Marco and Norelli, Antonio and Locatello, Francesco and Rodol{\`{a}}, Emanuele},title={Relative representations enable zero-shot latent space communication},booktitle={The Eleventh International Conference on Learning Representations,
{ICLR} 2023, Kigali, Rwanda, May 1-5, 2023},publisher={OpenReview.net},year={2023},url={https://openreview.net/pdf?id=SrC-nwieGJ},timestamp={Fri, 30 Jun 2023 14:55:52 +0200},biburl={https://dblp.org/rec/conf/iclr/MoschellaMFNLR23.bib},bibsource={dblp computer science bibliography, https://dblp.org},}
@inproceedings{norelli2023asif,title={{ASIF}: Coupled Data Turns Unimodal Models to Multimodal without Training},author={Norelli, Antonio and Fumero, Marco and Maiorca, Valentino and Moschella, Luca and Rodol{\`a}, Emanuele and Locatello, Francesco},booktitle={Thirty-seventh Conference on Neural Information Processing Systems},year={2023},url={https://openreview.net/forum?id=XjOj3ZmWEl},}
Sparse Vicious Attacks on Graph Neural Networks
Giovanni Trappolini, Valentino Maiorca, Silvio Severino, Emanuele Rodola, Fabrizio Silvestri, and Gabriele Tolomei
IEEE Transactions on Artificial Intelligence, 2023
@article{trappolini2023sparse,title={Sparse Vicious Attacks on Graph Neural Networks},author={Trappolini, Giovanni and Maiorca, Valentino and Severino, Silvio and Rodola, Emanuele and Silvestri, Fabrizio and Tolomei, Gabriele},journal={IEEE Transactions on Artificial Intelligence},year={2023},publisher={IEEE},}
Bootstrapping Parallel Anchors for Relative Representations
@inproceedings{DBLP:conf/iclr/CannistraciMMFN23,author={Cannistraci, Irene and Moschella, Luca and Maiorca, Valentino and Fumero, Marco and Norelli, Antonio and Rodol{\`{a}}, Emanuele},editor={Maughan, Krystal and Liu, Rosanne and Burns, Thomas F.},title={Bootstrapping Parallel Anchors for Relative Representations},booktitle={The First Tiny Papers Track at {ICLR} 2023, Tiny Papers @ {ICLR} 2023,
Kigali, Rwanda, May 5, 2023},publisher={OpenReview.net},year={2023},url={https://openreview.net/pdf?id=VBuUL2IWlq},timestamp={Wed, 19 Jul 2023 17:21:16 +0200},biburl={https://dblp.org/rec/conf/iclr/CannistraciMMFN23.bib},bibsource={dblp computer science bibliography, https://dblp.org},}
Attention-likelihood relationship in Transformers
Valeria Ruscio, Valentino Maiorca, and Fabrizio Silvestri
In The First Tiny Papers Track at ICLR 2023, Tiny Papers @ ICLR 2023, Kigali, Rwanda, May 5, 2023, 2023
@inproceedings{ruscio2023attention,author={Ruscio, Valeria and Maiorca, Valentino and Silvestri, Fabrizio},editor={Maughan, Krystal and Liu, Rosanne and Burns, Thomas F.},title={Attention-likelihood relationship in Transformers},booktitle={The First Tiny Papers Track at {ICLR} 2023, Tiny Papers @ {ICLR} 2023,
Kigali, Rwanda, May 5, 2023},publisher={OpenReview.net},year={2023},url={https://openreview.net/pdf?id=R82eeIF4rP\_},timestamp={Wed, 19 Jul 2023 17:21:16 +0200},biburl={https://dblp.org/rec/conf/iclr/RuscioMS23.bib},bibsource={dblp computer science bibliography, https://dblp.org},}
Autoregressive decoding limits the efficiency of transformers for Machine Translation (MT). The community proposed specific network architectures and learning-based methods to solve this issue, which are expensive and require changes to the MT model, trading inference speed at the cost of the translation quality. In this paper, we propose to address the problem from the point of view of decoding algorithms, as a less explored but rather compelling direction. We propose to reframe the standard greedy autoregressive decoding of MT with a parallel formulation leveraging Jacobi and Gauss-Seidel fixed-point iteration methods for fast inference. This formulation allows to speed up existing models without training or modifications while retaining translation quality. We present three parallel decoding algorithms and test them on different languages and models showing how the parallelization introduces a speedup up to 38% w.r.t. the standard autoregressive decoding and nearly 2x when scaling the method on parallel resources. Finally, we introduce a decoding dependency graph visualizer (DDGviz) that let us see how the model has learned the conditional dependence between tokens and inspect the decoding procedure.
@inproceedings{santilli-etal-2023-accelerating,title={Accelerating Transformer Inference for Translation via Parallel Decoding},author={Santilli, Andrea and Severino, Silvio and Postolache, Emilian and Maiorca, Valentino and Mancusi, Michele and Marin, Riccardo and Rodol{\`{a}}, Emanuele},editor={Rogers, Anna and Boyd-Graber, Jordan and Okazaki, Naoaki},booktitle={Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},month=jul,year={2023},address={Toronto, Canada},publisher={Association for Computational Linguistics},url={https://aclanthology.org/2023.acl-long.689},doi={10.18653/v1/2023.acl-long.689},pages={12336--12355},}
@article{cannistraci2023infusing,title={Infusing invariances in neural representations},author={Cannistraci, Irene and Fumero, Marco and Moschella, Luca and Maiorca, Valentino and Rodol{\`a}, Emanuele},year={2023},}
Zero-shot stitching in Reinforcement Learning using Relative Representations
@inproceedings{ricciardi2023zero,title={Zero-shot stitching in Reinforcement Learning using Relative Representations},author={Ricciardi, Antonio Pio and Maiorca, Valentino and Moschella, Luca and Rodol{\`a}, Emanuele},booktitle={Sixteenth European Workshop on Reinforcement Learning},year={2023},}
@inproceedings{maiorca2023latent,title={Latent Space Translation via Semantic Alignment},author={Maiorca, Valentino and Moschella, Luca and Norelli, Antonio and Fumero, Marco and Locatello, Francesco and Rodol{\`a}, Emanuele},booktitle={Thirty-seventh Conference on Neural Information Processing Systems},year={2023},}
@inproceedings{crisostomi2022metric,title={Metric Based Few-Shot Graph Classification},author={Crisostomi, Donato and Antonelli, Simone and Maiorca, Valentino and Moschella, Luca and Marin, Riccardo and Rodol{\`a}, Emanuele},booktitle={Learning on Graphs Conference},pages={33--1},year={2022},organization={PMLR},}
2021
EMNLP
WikiNEuRal: Combined neural and knowledge-based silver data creation for multilingual NER
Simone Tedeschi, Valentino Maiorca, Niccolò Campolungo, Francesco Cecconi, and Roberto Navigli
In Findings of the Association for Computational Linguistics: EMNLP 2021, Jul 2021
@inproceedings{tedeschi2021wikineural,title={WikiNEuRal: Combined neural and knowledge-based silver data creation for multilingual NER},author={Tedeschi, Simone and Maiorca, Valentino and Campolungo, Niccol{\`o} and Cecconi, Francesco and Navigli, Roberto},booktitle={Findings of the Association for Computational Linguistics: EMNLP 2021},pages={2521--2533},year={2021},}